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Abstract

This paper presents a nonlinear cusp catastrophe model of landslides and discusses the conditions leading to rapid-
moving and slow-moving landslides. It is assumed that the sliding surface of the landslides is planar and is a combi-
nation of two media: one is elasto-brittle and the other is strain-softening. It is found that the instability of the slope
relies mainly on the ratio of the stiffness of the elasto-brittle medium to the stiffness at the turning point of the con-
stitutive curve of the strain-softening medium. A nonlinear dynamical model, which is derived by analyzing the ca-
tastrophe model and considering external environmental factors, is used to reveal the complicated mechanisms of the
evolutionary process of the slope under environmental influence and to explore the condition of the occurrence of chaos
and the route leading to chaos. The present analysis shows that, when the nonlinear role of the slope itself is equivalent
to the environmental response capability, a chaotic phenomenon can occur and the route leading to chaos is realized by
bifurcation of period-doublings. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Although great efforts (Skempton, 1985; Lan, 1993; Qin et al., 1993; Chau, 1995; Claes, 1996; Duncan,
1996) have been made in the study of slope stability, the harsh reality of failing to predict many catastrophic
landslides in the world shows that so far we understand little about landslide mechanisms. A common
method for evaluating the stability of a slope is the limit equilibrium analysis. The factor of safety defined
by the limit equilibrium method of a rigid body is the ratio of resisting forces to driving forces. This method
has a great drawback. As an example considering the planar-slip slope, it is assumed that the sliding surface
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is composed of two kinds of media with different strength and that the rock mass above it is a rigid body.
The total resisting force is

Foni = Ly + bl (1)

where 1 and 1y, are the peak values of shear stress for media 1 and 2, respectively, and L; and L, are the
length along the sliding surface, respectively.

It is seen from the curve of the shear stress 7 versus the sliding displacement u that this method is suitable
only when the constitutive curves of media 1 and 2 simultaneously reach their peak stress values at some
displacement value (Fig. 1). However, it is highly unlikely that the constitutive curves of two media would
come to their peak stress values simultancously (Fig. 2). Thus, the resisting force can not be calculated
properly by Eq. (1). Hence, it is suggested that a new approach to evaluate the stability of a slope should be
considered which allows for the displacement along the sliding surface.

In addition, there are many intriguing unanswered questions related to rainfall-induced landslides
(Chau, 1995). For example, at a particular hill-side under heavy rainfall, why does one slope fail while the
adjacent slopes stand, even though the rainfall data and the slope type are virtually the same? How can one

72

7

Shear stress 7

v

Displacement u

Fig. 1. Constitutive curves of the media of sliding surface, simultaneously reaching the peak stress values.
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Fig. 2. Constitutive curves of the media of sliding surface, not simultaneously reaching the peak stress values.
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explain that a failure occurs at a rainfall which may not be the heaviest one in the history? These questions
are difficult to answer using the traditional slope stability analysis approaches. It is believed that a nonlinear
dynamical model which can reflect the subtle nature of the evolution of slope failure may lead to a better
prediction of landslides.

The concepts and mathematical techniques associated with nonlinear dynamical systems (NDS) theory
have been widely applied in virtually every scientific discipline including rock mechanics and geology (Thom,
1972; Henley, 1976; Saunders, 1980; Keilis-Borok, 1990; Phillips, 1993; Qin et al., 1993; Phillips, 1995; Li and
Huang, 1998). These concepts include chaos, fractal geometry, and catastrophe theory (Phillips, 1992). The
utility of the NDS concepts and techniques in the study of a landslide brings a brilliant opportunity to make
enhanced insights into the landslide mechanisms. The study of the dynamical behavior of the evolutionary
process of landslides by applying NDS theory has attracted the attention of many researchers. Qin et al.
(1993), Tang (1993), Tang et al. (1993), and Henley (1976) presented a few catastrophe models in their
studies of slope instability, reservoir-induced earthquake, coal pillar burst, rock specimen instability and
fault movement. Chau (1995, 1999) analyzed the bifurcations of a creeping slope with one-state and two-
state variable friction laws. Cui (1991), Cui and Guan (1993), Yi (1995), and Chau (1998) conducted ex-
perimental studies on the mechanism and onset condition of debris flow and hence established catastrophe
models of debris flow initiation. Many researchers (Phillips, 1993; Qin et al., 1993; Phillips, 1995; Li and
Huang, 1998; Qin, 2000) found that chaos may appear in the evolutionary process of a slope.

Deterministic chaos results in complex, irregular patterns arising from deterministic systems (Phillips,
1995). Chaotic systems are sensitive to initial conditions and perturbations. One consequence is that small
errors in the specification of the initial state can be amplified rapidly. Due to the inevitability of errors in the
observational and numerical sources from which initial conditions are obtained, it is generally believed
(Phillips, 1993; Qin, 2000; Qin et al., 2000) that the predictability limit (or predictable time scale) of
landslides should be considered bearing in mind that the evolutionary behavior of landsliding is chaotic.
Considerable speculations and some evidence indicate that chaos may be common in geophysical phe-
nomena (Phillips, 1995; Qin, 2000; Keilis-Borok, 1990).

Are there chaotic phenomena in the evolutionary process of a slope under the influence of external
environment factors? What are the conditions and routes leading to chaos? These problems have to be
solved in order to make a better evaluation of the stability of a slope and more accurate prediction of a
landslide.

Catastrophe theory is a mathematical technique developed principally by Thom (1972) for modeling
natural phenomena which contain discontinuities and sudden changes in the values of one or more pa-
rameters. Most landslides can be regarded as a discontinuous catastrophe phenomenon. Thus, it is ap-
propriate to use catastrophe theory to study landslides. In this paper, we will study the unstable
mechanisms of a planar-slip slope, in which sliding-surface materials comprise two kinds of media: one is
elasto-brittle and the other is strain-softening. Using catastrophe theory, the conditions leading to a rapid-
moving landslide and a slow-moving landslide (creeping landslide) will be presented. To analyze the en-
vironmental impact on the evolutionary process of a slope, a nonlinear dynamical model will be presented
to reveal the root of complexity of landslide evolution and to explore the condition leading to chaos.

2. Analysis on the unstable process of planar-slip slope by catastrophe theory
2.1. Mechanical model
It is assumed that the sliding surface with the dip f is a nonuniform intercalation and that the rock mass

above it is a rigid body (Fig. 3). H, mg (g is gravity acceleration) and / are the vertical height of rock mass,
the weight of rock mass and the layer thickness of the intercalation, respectively. Under the action of the
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Fig. 3. Mechanical model of a planar-slip slope.

driving force caused by the weight of rock mass, the creeping displacement is u along the intercalation. Due
to higher strength of the media (referred to as interfacial materials, such as rock bridge) or lower shear
stress at some segments of the intercalation, the media may have an elastic or strain-hardening property.
However, owing to discontinuous media, weathering and softening effect of water or higher shear stress at
the other segments, the media may have a strain-softening property after the peak stress. To simplify the
analysis and focus on the physical essence of the instability problem, we assume that the intercalation is
composed of only two kinds of media with different mechanical properties (Fig. 3), i.e., one (medium 1) is
elasto-brittle, and the other (medium 2) has a strain-softening property.
The constitutive equation for medium 1 can be assumed as

. { Geu/h  (u<u®) 2)

Tm (4> u")

where G, is the shear modulus, u* is the critical displacement of the unstable point, and 7., is the residual
shear strength.

For medium 2, the simplified constitutive equation can be generally expressed as a nonlinear function of
the shear stress v and the creeping displacement u. Tang et al. (1993) and Qin et al. (1993) used a Weibull
distribution and a negative exponential distribution of strength to describe the strain-softening property of
media, respectively. In this paper, a negative exponential distribution, defined by Eq. (3), is used, but other
distribution functions can also be used depending on one’s understanding of the material property.

(=G lLein 3

where G is the initial shear modulus and u is the displacement value at the peak value of the stress (Fig. 4).
It is evident from Eq. (3) that u; = 2u, and slope = —G,e~2/h at the turning point of the curve.

2.2. Cusp catastrophe model

For the system shown in Fig. 3, the overall potential energy is equal to the sum of the strain energy and
driving potential energy, i.e.

* Gy 1 G.l. )
V:ls/0 %e‘“/“Odu—kiTuz—mgusmﬂ 4)
where /. and /; are the length of the sliding surface for media 1 and 2, respectively, and /s + I = H/sin §; u
can be regarded as the state variable in the cusp catastrophe analysis. It is assumed here that /; and /. are far
larger than u# and approximately remain unchanged during sliding.
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Fig. 4. Constitutive curves of two kinds of media in the intercalation. (a) Shear stress versus displacement. (b) Shear force versus
displacement when the length of medium 1 with elasto-brittle property is far less than the length of medium 2 with strain-softening

property.

Let V' = 0 and the equilibrium surface equation (Fig. 5) is expressed as

Gl

. Gl .
V/:Tue*“/“o-i—Tu—mgsmﬁ:O (5)

Eq. (5) is the equilibrium condition of forces. The cusp can be solved by the smoothness property of the
equilibrium surface. At cusp, V" =0, i.e.

Gl
= sts
huo

which leads to
u=u = 2up (7)

(u/uy — 2)e ™" =0 (6)

Eq. (7) shows that the displacement value at cusp is exactly the displacement value at the turning point of
the constitutive curve of medium 2.
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Fig. 5. Cusp catastrophe model.

Making Taylor series expansion with respect to u; for Eq. (5), discarding all the terms but the first three
because the third order item is the minimum one away from zero while G.l.e*/G,l; — 1 and (1 + G.l.€*/
Gil) — mghe?* sin /Glu,, and substituting Eq. (6) into Eq. (5), one has

2Glaue™ | (u—u\’ 3 [ G.le? u—u\ 3 G.l.e> mghe’sin p

= = -1 =1 - =

3 h [( Uu; + 2 Gsls Uup + 2 + Gsls Gslsul 0 <8)

In order to transform Eq. (8) into a standard form of cusp catastrophe, let

x=(u—u)/u 9)

a=3k-1)/2 (10)

b=3(1+k—-k&)/2 (11)

k = G.l.* /Gl (12)

& = mghsin /Gl (13)
where k is the ratio of the stiffness of medium 1 (k. = G.l./h) to the stiffness at the turning point of the
constitutive curve of medium 2 (k, = | — G/se~2/h|) (for simplicity, it is called hereafter the stiffness ratio); &

is relative to the weight of rock mass, geometric size of the system, and mechanical parameters of media
(referred to as the geometric-mechanical parameter).
Substituting Egs. (9)—-(13) into Eq. (8) leads to

Ltax+b=0 (14)

Eq. (14) is the standard cusp catastrophe model of the equilibrium surface, with @ and b as its control
parameters and x as its state variable.

The cusp catastrophe described by the equilibrium surface containing fold or pleat is illustrated in Fig. 5
where axes of three-dimensional space are the control parameters «, b (horizontal) and response parameter
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x (vertical). The action over the equilibrium surface occurs as a smooth or catastrophic movement along the
equilibrium sheet. For example, Point B undergoes action and smoothly moves to Point B’ down the
equilibrium sheet representing a decrease in potential, but Point A may encounter the edge of the fold
where a slight change in the parameters (trigger) causes a fall or catastrophic jump to the lower equilibrium
sheet at A’. A control surface is the surface defined by the control parameters or projection of a three-
dimensional equilibrium surface to a two-dimensional control space. The line that marks the edges of the
pleat in the equilibrium surface, where the top and bottom sheets fold over to form the middle sheet, is
called the fold curve or singularity set. When it is projected back onto the plane of the control surface, the
result is a cusp-shaped curve. The singularity set can be determined from

V'=3x"+a=0 (15)

The cusp (bifurcation set) defined by the projection of the fold in the control surface determines the area
of the catastrophic behavior, i.e., if the trajectory of the action passes through the cusp, a catastrophic
action will occur. Combining Egs. (14) and (15) and eliminating x, the bifurcation set can be derived as

4a° + 276 =0 (16)

It is known from Egs. (10) and (11) that the control parameters a and b of the system are wholly de-
termined by the stiffness ratio £ and the geometric-mechanical parameter &. In other words, the bifurcation
set leading to catastrophe is related to the properties of the mechanical system itself and is irrelevant to
external action.

Substituting Egs. (10) and (11) into the bifurcation set equation (16), one has

2k =17 491 +k— k) =0 (17)

The bifurcation set (Fig. 5) defines the thresholds where sudden changes can take place. As long as the state
of the system remains outside the bifurcation set, the behavior varies smoothly and continuously as a
function of the control parameters. Even on entering the bifurcation set no abrupt change is observed.
When the control point passes all the way through the bifurcation set, however, a catastrophe is inevitable.
Thus, Eq. (17) is the sufficient and necessary mechanical criteria for the planar-slip slope instability (rapid-
moving landslide).

Apparently, only when a <0, the condition of Eq. (16) may be satisfied, i.e., a catastrophe probably
occurs. Thus, in terms of a <0, the necessary condition of instability is

k<1 (18)

Eq. (18) shows that the smaller the stiffness of medium 1 is, the larger the post-peak stiffness (the ab-
solute value of constitutive curve slope after the peak stress) of medium 2, and the more possible it is for the
slope system to lead to catastrophe. Because the stiffness ratio depends on the geometric size and the
material property of the system, the necessary condition leading to catastrophe is only related to the inner
characteristics of the system. If the media of the intercalation are wholly hardening or if one medium is
elastic and the other is ideally plastic, then £ — oo and a landslide will not occur.

Eq. (14) or (15) can be used to determine the critical displacement value of the unstable points as follows:

ut = [1-?(1—1{)‘/2] (19)

It should be noted that, in the derivation of Eq. (19), the minus sign in front of the square-root term is
used, because the state variable u or x has a jump while the landslide system passes through the left branch
(b < 0) of the bifurcation set (Fig. 6). Eq. (19) indicates that the points of instability associated with the
stiffness ratio can appear before (k < 0.5) or after (k > 0.5) the stress peak value.
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Fig. 6. A jump of the state variable x when the system passes through the bifurcation set.

When 2(k — 1)3 +9(1 + k — k&) > 0, the slope is in a very stable state because Eq. (4) (potential
function) only has a minimum value.
When the control parameters satisfy

20— 17 +9(1 +k—k&) <0 (k<1) (20)

it is shown (Saunders, 1980; Qin et al., 1993) that, although the slope body is in a limit equilibrium state
under the action of internal and external factors, very small changes of these factors result in very small
changes of the equilibrium states. This corresponds to a creeping landslide (slow-moving landslide).

2.3. Comparison with the limit equilibrium method

Eq. (17) can be further expressed as

Gl 0.5¢>
mghsin f3 uo{l +kﬂ:§(l B k)3/2}

(k<1) (21)

For a rapid-moving landslide, » < 0. Taking a plus sign for the right-hand side of Eq. (21), one obtains

Gl 0.5¢?
mghsin f3 uo{l +k+\/T§(1 B k)s/z}

(k<1) (22)

The factor of safety defined by the ratio of the resisting force to the driving force at certain deformation u is

_ Gylue™™ + kGyle?u  0.5¢* (e + ke ?)u

. = 23
mghsmﬁ u0|:1+k+§(l_k)3/2 ( )
It is evident from Eq. (23) that the factor of safety depends only on k and u/uy, that is to say, K is related to
the creeping displacement u.
When a slope evolves to the critical state, i.e., u = u*, substituting Eq. (19) into Eq. (23), one can obtain
the critical factor of safety as follows:
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-2 - k)1/2/2] (em +k)

K.
1+ k+2(1—k)

(24)

It can be seen that K. is only related to k. The relation between K. and k from Eq. (24) is listed in Table 1.
It is seen from Table 1 that when k£ = 0, K is the smallest, and then K, increases as k increases. This shows
that the different stiffness ratios correspond to different critical factors of safety and that the critical factor
of safety is not a fixed value of 1, as defined by the traditional equilibrium method. Thus, the limit equi-
librium method is analogous to the condition £ = 1, and is a special case of Eq. (24).

The condition leading to a slow-moving landslide can be derived from Eq. (20) for different stiffness
ratios. Its expression is

[1 V(1 - k)l/z/z} (em +k)
14k +2(1— k)

[1 V21— k)”z/z} (em +k)
1 +k—2(1 k)

<K<

(25)

The relation between K. and k from Eq. (25) is listed in Table 2.

It can be seen that when k& < 1, even if the factor of safety is more than 1 but less than the critical upper-
limit value listed in Table 2, we can only judge that a rapid-moving landslide will not occur, although a
slow-moving landslide will inevitably take place. Thus, the limit equilibrium method can be only used to
determine whether a rapid-moving landslide will occur or not. For this reason, it is apparent that slow-
moving landslides can still occur even when the factor of safety calculated by the limit equilibrium method
is >1.

We can also deduce that even if K. < 1, but K, is still greater than a certain value, the rapid-moving
landslide may not occur. For example, when k£ = 0, 0.82 < K. < 1, a rapid-moving landslide will not occur.
Thus, it is apparent why some slopes are still stable when K. < 1. This means that a slow-moving landslide
may occur, but during the slow sliding process, the landslide may be affected by external environment
factors and hence re-stabilize.

It should be also noted that the evolutionary path of a slope may be changed by the action of envi-
ronment factors, so that a slow-moving landslide may be turned into a rapid-moving landslide.

It is concluded from Egs. (17) and (18) that instability of the slope relies mainly on the stiffness ratio k,
not on the strength.

Table 1
Condition leading to a rapid-moving landslide
k 0 0.2 0.4 0.6 0.8 1.0
K. 0.8187 0.8949 0.9471 0.9793 0.9956 1.0
Table 2
Condition leading to a slow-moving landslide
k KC
0 0.8187-2.2791
0.2 0.8949-1.5948
0.4 0.9471-1.2986
0.6 0.9793-1.1371
0.8 0.9956-1.0434

1.0 1.0
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2.4. Instability mechanisms of slope

Eq. (12) shows that the stiffness ratio is related to both the shear modulus and the length of media 1 and
2 along the sliding surface. Obviously, the condition of the stiffness ratio <1 is easily satisfied for an actual
slope when /. is far less than /;. In the following discussion, we assume that /. and /; remain unchanged and
the stiffness ratio is in the neighborhood of k£ > 1 for analyzing the mechanisms of instability while the
mechanical parameters vary under the action of water.

It is generally believed that the instability of a slope has a close connection with the action of water.
Under the action of water, the shear modulus of medium 1 with an elasto-brittle property becomes lower
and its shear resistance also decreases at the same time. Thus, the stress borne by medium 2 with a strain—
softening property correspondingly increases and its strength also becomes lower owing to the action of
water. This interaction readily makes medium 2 deform into its post-peak strain—softening phase.

After evolving into the strain-softening phase, the action of water makes the post-peak stiffness of
medium 2 at the turning point increases (i.e., the steeper the curve of t—u after peak stress value) (Fig. 7(a))
and the stiffness of medium 1 decrease. On the other hand, the post-peak stiffness of medium 2 can also
increase while the drained condition becomes expedite due to progressive failures within the intercalation
(Fig. 7(b)). This may result in a stiffness ratio of <1 and trigger instability of the slope. It can also be seen
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Fig. 7. (a) The effect of pore pressure on the brittle-ductile transition in limestone at a confining pressure of 6.9 MPa. Numbers on the
curves are values of pore pressure in MPa (Fig. 8.9.2 in Ref. Jaeger (1979).) (b) Drained and undrained triaxial compression test results
for a shale of Pennsylvanian age; w; is the initial water content; p,, is the pore water pressure (Fig. 3.17 in Ref. Goodman (1989).)
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that the larger the post-peak stiffness of medium 2, the more quickly its resistance to deformation falls at a
certain displacement increment, and the higher the shear stress on medium 1 (rock bridge). This will cause
the rock bridge to fail, resulting in landsliding.

3. Nonlinear dynamical model of evolutionary process of slope

In the above analysis, we considered the quasi-static movement process of the slope, but not the dy-
namical process of instability and the influence of external environmental factors on the evolutionary
process of the slope. A nonlinear dynamical model of instability of the slope may be considered to study
these problems.

The nonequilibrium resultant force leading to instability of the slope can be derived from Eq. (4)

v

ou
where ¢ = 2G;lue 2 /3. The expression F = mu,5 is valid for a block to slide along a smooth inclined plane.
However, for an actual planar-slip slope system, natural or artificial damped factors, such as variation of
shear stress with the displacement rate x caused by the roughness of the sliding surface, should also be
considered. According to Newton’s viscosity law (Skempton, 1985; Qin, 2000), it is assumed that the
damped force produced by damped factors is pu;x. In addition, the influence of the change of environ-
mental factors, such as four-season climate, temperature, rainfall, earthquake and vibration, on the evo-
lutionary process of a slope, should be taken into account. Assuming that the environmental impact is a
periodic force (or signal), which can be expressed approximately as 4 cos wt, one has

—c(x’ + ax + b) (26)

F = mu X + pux — Acos wt (27)

where u is the damped coefficient; 4 and @ are the amplitude and the circular frequency of the periodic
force, respectively.
Substituting Eq. (26) into Eq. (27) leads to

mu¥ + X + cx® + cax + cb = A cos ot (28)

Let u/m = n, ca/mu; = wj(a > 0), « = ¢/mu;, and p = A/mu,. Considering that the constant item (cb/mu;)
has a very small impact on the evolutionary behavior of nonlinear equation (28), we can neglect the
constant item in order to focus on the essence of the instability problem. Eq. (28) can be rewritten as

¥ 4 nx + o’ + wjx = pcos wt (29)

where o represents the nonlinear mechanical property of the system under the influence of rainfall or
earthquake. Eq. (29) is similar to the Duffing’s equation (Homes and Rand, 1976; Liu, 1995).

Because the external load pcos wt varies with a simple harmonic oscillation, the solution of Eq. (29)
(Homes and Rand, 1976) is assumed to be in the following form

x = Wcos(wt + ¢) (30)

where W is the amplitude and ¢ is the initial phase.
Substituting Eq. (30) into Eq. (29), neglecting the third order harmonic item, and using the condition of
coefficients prior to cos wt and sin w¢ being zero, one obtains

3 2
w? (coé -’ +Zo<W2) + Wi’ = p? (31)

Eliminating the second order item on W? of Eq. (31) leads to
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(B+0) + (B+Qug+1s=0 (32)
where

B=Ww? (33)

p=awp—o (34)

0 = 8p/9 (35)

ug = 16(37w* — p?) /27 (36)

vg = —16{8p(p* + In*w?) + 8l ap’} /7294’ (37)

where B + Q is the state variable; u4 and vq4 are the control parameters. Eq. (32) (Homes and Rand, 1976) is
the standard equilibrium surface equation of double cusp catastrophe (Fig. 8), because the state variable
itself is composed of variables B and Q. The position of two cusps can be solved by uy = 0 and vq4 = 0. Let

f =o* — v} = —p, and the following solutions can be obtained:
9
Ji2 3n<212\/4n2+3w%> (38)
3217
A = 81[;2 (39)

The coordinates of two cusps in Fig. 8 are Oy (f, ;) and O, (f3, o), respectively.
In fact, f(f = w* — w}) is the quadratic error between the oscillation frequency w of input signals of the
external environment and the self-oscillation frequency w, of the system. For simplicity, it is referred to as

Equilibrium surface

Bifurcation set

Fig. 8. Catastrophe model with double cusps.
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the frequency difference. Fig. 8 shows the relation among the amplitude W, the frequency difference f'and
the nonlinear coefficient o. The following is an analysis of the effect of different values of « on the dynamical
system:

(1) When o is a minuscule value and can be neglected, i.e., the nonlinear property of the oscillation
system is very weak, the oscillation system mainly behaves like a linear vibrator. The following equation
can be derived from Eq. (31)

p
N

Eq. (40) shows that when the oscillation frequency w of the environmental signal is close to the self-
oscillation frequency w, of the system, the amplitude of the system increases and so-called resonance
phenomenon appears (path 44" in Fig. 8).

(2) When o < a,, the position of the maximum amplitude value is not at that of @ — @y, but is within
some frequency range of w < w, (path BB’ in Fig. §).

(3) When o > a,, the position of the maximum amplitude value is in the frequency range of ® > w, (path
CC’ in Fig. 8).

The above analysis shows that when « # 0, i.e., the nonlinear property of the system is considered, the
influence of the environmental factors on the slope stability is very complicated. In other words, the time
for the landslide to occur is possibly not synchronous with the period of rainfall or earthquake, possibly
explaining the delayed response of slope movements to rainfall (Chau, 1995). This may also explain the
difficulties experienced in trying to establish a statistical relation between rainfall data and landslide oc-
currence.

W =

(40)

4. Chaotic effects produced by the nonlinear dynamical model

Chaos is one of the characteristics of the nonlinear system. A very small change of initial conditions may
lead to a great response of the system. This response is obviously uncertain. Eq. (28) indicates that chaos
may appear in the evolutionary process of a slope.

Assume that all the parameters are constants except p = 4/mu; in Eq. (28). For simplicity, let u/m = 0.3,
ca/mu; = —1(a <0), ¢/mu; = 1, ¢cb/mu; = 0, and w = 1.2. Thus, Eq. (28) becomes

¥4 0.3% +x* —x = pcos 1.2t (41)

The solutions of Eq. (41) for different values of p are shown in Fig. 9. When p < 0.3, all solutions of x()
are periodically oscillating and the periods doubly increase in turn. When p = 0.2, the oscillating period 7 is
equal to the period T of the external environmental signal, i.e., t = T = 2n/1.2. When p = 0.27, 0.28, and
0.2867, © = 2T, 1 = 2°T, and © = 2T, respectively. When p increases continuously and reaches the critical
value p..(ps & 0.3), 7 is 2*°. In other words, the period becomes infinite, i.e., the system does not hold
periodicity any more and chaos appears. This means that when the magnitude of the external environ-
mental signals gradually become enhanced, chaos can appear in the evolutionary process of a slope and its
route leading to chaos is realized by the bifurcation of period-doublings.

When the values of p are within the range of chaos, there exists a narrower periodic window, as illus-
trated in Fig. 9(f) between (e) and (g). The period in Fig. 9(f) is 57. As the values of p increase within the
chaotic interval, the periodic oscillation with period 2”7 may appear (n = ..., 2,1,0), such as the oscillation
with periods 27" and 17 in Fig. 9(h) and (i). This shows that under the environmental influence, the evo-
lutionary behavior of a slope is a complex nonlinear process: sometimes periodical and sometimes chaotic.
If the evolutionary behavior of a slope is periodic, a deterministic prediction can be made; if it is chaotic,
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Fig. 9. Curves of x—¢ for different values of p (p = 0.20, 0.27, 0.28, 0.2867, 0.32, 0.36, 0.40, 0.645, 0.85).

the predictable time scale (Qin et al., 2000) must be considered and the accuracy of prediction during the
time scale should be studied. The above analysis also indicates that chaos can be produced by a deter-
ministic model and the occurrence of chaos lies in the interaction between the nonlinear properties of the
slope itself and the environmental factors.

The phenomenon of period-doubling oscillation (or bifurcation) leading to chaos can be also seen from
the trajectory in phase plane(x,x). Fig. 10 represents the trajectory in the phase plane corresponding to
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Fig. 10. Trajectories of (x,x) for different values of p.

Fig. 9(a)—(e) (transient-state process is removed). It can be seen that periodic motions are all along closed
curves. The periodic oscillation with period 2"T has n trajectories with a similar trend, and these trajectories
have n points of intersections. As for chaotic motion (Fig. 10(e)), it can be seen that its trajectory is dis-
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ordered. However, this does not imply that the chaotic motion is wholly disordered and does not have a
certain structure. In fact, it has an inner structure. Here, we suggest to use the following method to analyze
such a complex motion.

The forced vibration system can be seen as the coupling of two oscillation subsystems: one is Duffing
equation

¥+035+x—x=0 (42)

which represents the nonlinear subsystem, and the other is the periodic force acted by external environ-
mental factors, which can be regarded as a linear simple harmonic oscillating subsystem. It is evident that
Eq. (42) has three singular points (Liu, 1995): (1) saddle point: x; = 0 and x, = 0; (2) stable spiral point:
x; =1 and x, = 0; and (3) stable spiral point: x; = —1 and x, = 0. When the amplitude p of the periodic
force is relatively small, the oscillation of the linear subsystem and its role on the nonlinear subsystem are
very weak, and the motion of the whole system is oscillating around one of two stable spiral points of the
nonlinear subsystem with the frequency (w = 1.2, 1 = T) of the linear vibrator (Fig. 10(a)). When p in-
creases slightly, the impact of the nonlinear subsystem is to make the oscillation of the whole system
produce fractional frequency (period-doublings) around the stable spiral point (Fig. 10(b)). When p in-
creases further and exceeds the interval among three singular points, the system can bounce and oscillate
among these singular points back and forth (Fig. 10(e)), then the motion becomes more complicated, and
chaos emerges. When p increases more significantly, the linear vibrator holds a dominant role. At this time,
the role of the nonlinear subsystem is relatively weak, and the whole system moves in a pattern of the linear
subsystem. This means that the whole system is locked at the frequency of the periodic force (r = 7). In
summary, when one of two coupling subsystems plays a dominant role, the whole system is in the state of
period-doublings. Only when the interacting capability of two subsystems is matched, two oscillations have
a strongly mutual impact and chaos emerges. The above analysis shows that the chaotic phenomenon can
appear when the nonlinear role of the slope itself is equivalent to the response capability of the linear
periodic force produced by the external environmental factors.

5. Conclusions

The following conclusions are obtained from the above analysis:

1. A cusp catastrophe model of a planar-slip slope, whose sliding surface is composed of two kinds of
media (medium 1 is elasto-brittle and medium 2 is strain-softening), is presented based on catastrophe
theory. The conditions leading to a rapid-moving landslide and a slow-moving landslide are also derived. It
is found that the instability of the slope relies mainly on the ratio of the stiffness of medium 1 to the post-
peak stiffness of medium 2. The critical factor of safety varies with the stiffness ratio and is not a fixed value
of 1, as defined by the traditional limit equilibrium method.

2. A nonlinear dynamical model of the evolutionary process of slope is presented by making further
analysis on the catastrophe model. It is found that the relation between the external environmental factors
and the response of the slope system is complexly nonlinear. This means that the occurrence time of a
landslide is probably not synchronous with the maximum rainfall or earthquake.

3. When the nonlinear role of the slope itself is equivalent to the response capability of the external
environmental factors, chaos can appear in the evolutionary process of the slope and its route leading to
chaos is realized by the bifurcation of period-doublings. Thus, if chaos occurs, it is very difficult to predict a
landslide accurately.
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